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Wave formation on the surface of a liquid film flowing around a horizontal cylinder is 
studied theoretically and experimentally. Steady transverse waves are formed on the surface 
of the film at large velocities because of centrifugal force. The theoretical solution for 
the growth of these waves is obtained assuming small film thickness; the results agree closely 
with the experimental data. 

It is known [1-3] that waves of different types are formed on the surface of a liquid 
film flowing around a horizontal cylinder. When the velocity of the liquid on the lower 
generatrix of the horizontal cylinder is small, a system of standing waves is produced which 
is uniformly distributed with respect to wavelength. The crests of the standing waves period- 
ically break away in the form of drops. This system of waves is associated with the Taylor 
instability of the film at the bottom of the cylinder. 

When the velocity of the liquid increases the acceleration perpendicular to the surface 
of the cylinder also increases and the Taylor instability exists over practically the entire 
surface of the cylinder (except near the top) and a system of steady transverse waw~s is 
formed (in the form of rolls threaded on the tube). The existence of waves of this kind was 
first pointed out in [4]. They were further studied theoretically and experimentally in [51, 
where the properties of the waves were obtained approximately without taking into account 
the effect of friction on the surface of the tube (in the framework of the deep water model). 

Kinematic waves are also formed on a liquid film draining along the curved surface of 
a cylinder. These waves can only develop for large diameters (when the diameter of the cyl- 
inder is 20 times larger than the capillary constant). In the present paper we consider the 
Taylor instability of a liquid film flowing around a horizontal cylinder with the friction 
of the liquid against the wall of the cylinder taken into account. 

Waves on the surface of a liquid film flowing around a cylinder were studied using the 
apparatus shown schematically in Fig. i. The apparatus consists of three main parts: a still- 
ing chamber I, a nozzle 2, and a horizontal cylinder 3- Pure water was used as the working 
liquid. Water from a pump flows into the chamber through a slit in the upper part of a hori- 
zontal tube 4. The internal dimensions of the stilling chamber were 238 • 45 • 200 mm. To 
equalize the flow into the chamber a layer of coarse synthetic wool 6 and honeycomb 5 was 
used. The latter was prepared from thin nickel tubes of diameter 3 mm, length 30 ~n, and 
wall thickness 0.i rmm. Below the stilling chamber was attached a plane nozzle of length L = 
238 ram. To eliminate boundary effects in the jet, asbestos cemen~ rods were mounted flush 
with the ends of the surface of the nozzle. 

The arrangement of the stilling chamber and nozzle made it possible to obtain plane jets 
with extremely small perturbations on the surface. The experimental cylinders (interchange- 
able) were placed at a distance of 40 mm from the nozzle. Nozzle widths of 0.85 and 1.2 ram 
and cylinder diameters of 15, 26, 4S mm were used. The incident velocity of the jet Uin 
(before striking the surface of the cylinder) was varied from 0.9 to 2.5 m/sec. The velocity 
u 0 on the surface of the film after rotation of the jet (near the top) was somewhat smaller 
and was determined beforehand by measuring the velocity of particles floating on the surface 
of the film [6]. The experimental results are shown in Fig. 2. The results using different 
nozzles (curve i: nozzle width 0.85 mm; curve 2: nozzle width 1.2 rnm) are approximated by the 
curve. 

The experiments show that for Re < 300 (Re = Q/L~, where Q is the volume flow rate of 
the liquid, L is the nozzle length, and ~ is the viscosity of the liquid) water drains from 
the lower generatrix of the cylinder in the form of drops and thin water threads. This type 
of flow is quite well-known theoretically [2, 3] and experimentally [7]. Each thread 
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corresponds to a standing transverse wave covering a small region near the bottom of the cyl- 
inder. The liquid film near the top of the cylinder remains completely smooth. When a thin 
knife-edge is placed under the cylinder (in the plane of the incident jet) the liquid flows 
over it continuously, while the water near the bottom of the cylinder flows as before. 

As the velocity of the incident jet increases, the region where the surface has a notice- 
able wave structure extends upward from the generatrix of the cylinder. A system of regular 
standing rolls originates near the top of the cylinder. As the velocity increases further 
the wave crests begin to vibrate along the axis of the cylinder and break off from the sur- 
face without having reached the aft region. The point of separation moves upward along the 
surface of the cylinder as the velocity increases. 

We note that as the liquid moves along the cylinder, the wave amplitude increases, while 
the wavelength remains constant. The wavelength decreases with increasing velocity of the 
incident jet and decreasing nozzle diameter. A photograph of the flow is shown in Fig. 3, 
where Re = 1200 and the nozzle width is 0.85 mm. 

The effect of weak regular perturbations on the wave structure was studied experimen- 
tally. A system of equally spaced wires (d = 0.i mm) was placed perpendicular to the jet at 
different distances from the nozzle. The spacing between the wires was varied from run to 
run. When the grid was placed near the nozzle the resulting perturbations on the surface of 
the jet were small, although their intensity was much larger than that of perturbations gen- 
erated by the nozzle. The wave structure did not change as a result of such a grid. Hence 
one concludes that perturbations of the surface associated with the specific geometry of the 
nozzle also do not affect the development of waves. When the distance between the nozzle 
and grid was increased, the intensity of the resulting perturbations on the surface of the 
film also increased and the perturbations began to affect the development of the waves. 
Over a small interval of velocities of the incident jet the wavelength on the cylinder be- 
comes equal to the wavelength of the perturbation (spacing between the wires) if this spacing 
is close to the wavelength of the unperturbed flow. Outside this interval the wavelength is 
somewhat smaller than that of" the unperturbed flow. Most of the experiments were carried out 
without the use of the turbulence-generating grid. The observed wave structure was photo- 
graphed and the wavelength was determined from the photographs. 

We next consider the theoretical analysis of the draining of the film. A schematic 
diagram of the flow is shown in Fig. 4, where r, % z are cylindrical coordinates, v r, t~q,, 
v z are the velocities of the flow along these coordinates, ~ is the wavelength, g is the 
acceleration due to gravity, and h is the film thickness. 

The general form of the equations describing the motion of the film along the cylindri- 
cal surface are: 

equations of motion 
av r v~ av r vs bur ~ Op (a2ur t aVr Vr 

* + v~ g c o s ~  ~ + + Vr ~ + r a~ r Oz p Or ~ ~ r Or r 2 

02pr 20V~ 02l~r ~ OU~ V~ ~Y~ Vrv ~ OV~ 
+;,~ OT 2 r~OT +~-~) '  U r ~ r  + r - ~ - + g + U z - ~ - z .  = g s i n ~  - 
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e q u a t i o n  of c o n t i n u i t y  
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kinematic condition on the surface of the film 

Oh % Oh 
r = B + h ,  V , = a - T - 7 -  + ~ v ~ '  

and the boundary conditions 

r ==- R ,  vm ~ l . ,  r = V z == O. 

We also assume that the tangential stress on the surface of the film is equal to zero (there 
is no friction with the air). 

We write the system of equations in dimensionless form. The wavelength is taken as the 
unit of length in the z direction, the radius of the cylinder R is taken as the unit of length 
in the direction of flow along the surface of the cylinder, and the film thickness h 0 in the 
unperturbed state is taken as the unit of length along r. Here h 0 = QL/2U0, where QL is the 
flow rate per unit length of the incident jet in ma/(sec.m). 

Waves are generated near the top of the cylinder, where the thickness of the boundary 
layer is small in comparison to the film thickness and the increase in ~ because of gravity 
is~negligible. Therefore we put ~ =u0~const , gsin ~ : 0, gcos~ ==g. We introduce the nota- 
tion O~ = ra@~. We will also assume that the wavelength and radius are of the same order of 
magnitude, while the film thickness h 0 ~ X. Then e = ho/L ~ h0/R<<l. 

Then the system of equations has the form: 

equations of motion 
* . 

* cgv*r 172 vr " * Ovr t gB 
v, or--- ~ + ~ e + Vz -~Se = r,  ,2 

O~ 

u r 
E 

, Or* ~ * a * O V z , L~ z 
a'r i)r ~ g -F OT-- ~ -F 12z Oz* 

e q u a t i o n  of  c o n t i n u i t y  

, 
ap* 1 a2v* ~3 t )v* ~3 v~ 
a,* . + ~ \ ~  + ,.-~ o 7  - - ~  P + - -  

l a p *  e ( 2  av* t ) 
,,*@* +~-E , . - : ~ - r - ~  ' 

a~* + ~ \ a--~- + -5- ~ + r *--~2 ore*----7 

a *  * o *  l;r ?;r ~ z 
a-~ + -T,- s + -57, = O, 

o-.,  P + ~ ' 7 '  ~ ) ''' 
r*2 dq~,* 2 ~ , 

+ W ~ ,  

(1) 

kinematic condition on the surface of the film 

r = R + h: vr = 8h*lO~* + v*Oh*/Oz*, 
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and the no-slip condition 

r----R: Vr-----Yz =0. 

Here v~ = vz/v~; v~ = v~R/v~ho; z* ---- z/R; ~* = ~/l ;  r* = r/R; T* = ~v~/R; h* h/ho; p* ---- p/v~p; Re 
vr T u r n i n g  t o  t h e  d i m e n s i o n a l  f o r m ,  we assume t h a t  t h e  t e r m  Re ~ i s  o f  o r d e r  u n i t y ,  ~r* 
i s  o f  o r d e r  e ,  and t h e  r e m a i n i n g  t e r m s  o f  t h e  e q u a t i o n  a r e  o f  o r d e r  u n i t y .  O m i t t i n g  t e r m s  
o f  o r d e r  ~ and a l s o  t h e  t e r m  Vz~Vz/~Z,  s i n c e  t h e  u n p e r t u r b e d  componen t  v z = 0, we o b t a i n  

OVz i Op 02Vz i Op v~ 
o~ p oz + v - -  g; (2 )  Or s ' p Or R 

Ov,/Or + Ov/Oz = 0; (3 )  

r = R -}- h: v~ = Oh/O~ + v~Oh/Oz, r ---- R: v~ = v, = 0; (4) 

r :-= R + h: O~/Or = 0. (5 )  

The l a s t  e q u a t i o n  f o l l o w s  f rom t h e  v a n i s h i n g  o f  t h e  t a n g e n t i a l  s t r e s s  on t h e  s u r f a c e  o f  t h e  
f i l m  in  t h e  l o n g - w a v e l e n g t h  a p p r o x i m a t i o n .  

Hence  we h a v e  t r a n s f o r m e d  t h e  o r i g i n a l  t h r e e - d i m e n s i o n a l  s t e a d y  s y s t e m  o f  e q u a t i o n s  t o  
a t w o - d i m e n s i o n a l  u n s t e a d y  ( s i n c e  �9 h a s  t h e  u n i t s  o f  t i m e )  s y s t e m .  E q u a t i o n s  s i m i l a r  t o  (2 )  
we re  u s e d  in  [3] t o  a n a l y z e  t h e  T a y l o r  i n s t a b i l i t y  on t h e  l o w e r  g e n e r a t r i x  o f  t h e  c y l i n d e r  
(without the term v$/r). 

The pressure is found from the second equation of (2) in the form 

Pt~ R+h R+h 

- ~ - j ' d p =  J" ~ d r - -  ~ gdr, 
(6) p r r 

l 1 .2 [ ln(R + h ) - -  lnr] T p = T p~ + (R § h - - r )  g - -  v~ 

(Po i s  t h e  p r e s s u r e  on t h e  s u r f a c e  o f  t h e  l i q u i d  f i l m ) .  

From t h e  Y o u n g - L a p l a c e  e q u a t i o n  in  t h e  l o n g - w a v e l e n g t h  a p p r o x i m a t i o n  we h a v e  

p~ = po § c~ i § -~2 = P~ § (* ~-+--g - -  (~ oz---:i' (7 )  

where  P0 i s  t h e  e x t e r n a l  p r e s s u r e ,  R~ i s  t h e  r a d i u s  o f  c u r v a t u r e  o f  t h e  c y l i n d e r ,  R 2 i s  t h e  
r a d i u s  o f  c u r v a t u r e  o f  t h e  t r a n s v e r s e  wave ,  and o i s  t h e  s u r f a c e  t e n s i o n ,  

S u b s t i t u t i n g  (6 )  and (7 )  i n t o  t h e  f i r s t  e q u a t i o n  o f  ( 2 ) ,  we f i n d  

o--f = v - -  + - - - -  + [ n + h  + - - g j - - -  (8 )  Or 2 9 0 z  s "p (R -]- h) s Oz 

B e c a u s e  R >> h ,  we p u t  R + h = R. I n t e g r a t i n g  (8 )  and (3 )  w i t h  r e s p e c t  t o  f i l m  t h i c k n e s s ,  we 
o b t a i n  f rom (4)  

R+h 

o v ~ d r = - - v  + - - - - §  [ - ~ + p R s  -~z' 
o-~ ~ , , = R  9 0 z  3 - -  - -  gh 

R (9) 
R + h  

Oh 0 f 0---~ + "~z . vzdr = O. 
R 

The term-v~(Oh/O:c),=R+h i s  o m i t t e d  on t h e  l e f t - h a n d  s i d e  o f  t h e  f i r s t  e q u a t i o n  o f  ( 9 ) ,  

since it can be shown that its ratio with O/Ov .I vzdr is the same order as the ratio of the 
R 

inertial terms omitted in (2) with 8Vz/8~. 

The velocity profile v z must be known in order to determine the quantity (3Vz/8r)r= R. 
We estimate v z from the first equation of (2), assuming a pressure gradient Op/3z and 3Vz/ 
8~ = 0. Integrating this equation with the use of (5), we obtain the semiparabolic velocity 
distribution 

t Op [2 ( r - -R )  ( r - -R)2]  =Uz(z)[2~l__~]~]" 
v~ = 29v (A,+ h)~ ~z R + h  ( f l+h)  2 (10 )  
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This assumption was justified in [ 8 ] .  

and from (9) and (i0) we obtain 

#q 3v 

a~ h :~ q 

We next introduce the instantaneous flow rate 

Rq-h 

q = t uzdr 
h 

oh a~h + [--R- + - -  gh]  ~- ~ = O. 
p #Z 3 ~ #z ' Oz 

S u b s t i t u t i n g  q = qo + q '  a n d  h = h o + h t 
part, using the fact that q0 = O, h 0 >> h', and keeping terms of order h0, we have 

o ]~ [ , ]ah' (12) Oq" 3v q, oh_..2 r~_._j v~l~ o (~h o __. 

a'~ h~ + t ) az :~ + --7[- q- -pR~ -- gh~ az ' 

aq ' l&  + ah',,,'ar =: O. (13) 
Differentiating (13) with respect to x, we can find 3q'/3z and 8~q'/azSx from the re- 

sulting equation and from (13). Differentiating (12) with respect to z and substituting 
the derivatives of the instantaneous flow rate in the resulting expression, we obtain the 
following equation for the film thickness perturbation: 

,"-/,.' a,: :~/~' ~h o,:/,, [ ,,$ho ,,:,.o ] ':':: = o. 
:)---w + /,,~ a--T + ,~-r aGT + L-~ + ~ - gh~ ~)~2---7. ( 14)  

We assume a solution to (14) in the form of standing waves in z which are amplified 
(damped) in ~: 

h' , :  A o exp (ikz) exp ~ 

( k  i s  t h e  w a v e  n u m b e r  a n d  ~ i s  t h e  g r o w t h  c o n s t a n t  o f  t h e  w a v e ) .  
we obtain the dispersion relation 

,% ~1% k 4 .  [ ,~h 0R 

and  h e n c e  t h e  g r o w t h  c o n s t a n t  o f  t h e  wave  

For waves corresponding to maximum growth 

dk 

into (ii), where a prime denotes the perturbed 

(15) 

Substituting ( 1 5 )  into (14), 

oh0 ] 
PR ~ gh o k ~ = O, ( 1 6 )  

[ ~h ~h. 0 ] k ~. 
k r  2 ] (17) 

--4-b-e' +2 L-~-+~ 7-gh''/k 
1/'3v ..... ,~ +"0 DT~ ~d' I~ ---~~ k4 "~ ..... g k '  

Putting 6 = O, we obtain from (16) the wave number corresponding to neutral waves 

k~ = ~ L R + - - -  gh'~ " pR 2 

for waves corresponding to maximum growth we obtain from (18) 

V~ 1 k~ = ~ - - i f -  + en--~.,- gh,  , 

and in dimensionless form 

(18) 

(19) 

~'~ = ]~'M 1~ ~ ~ - ~  V W e u  - -  W e g  q- 1 

(we,. = 41~,,,'~. we~ = :'W~). 

Substituting (19) into (17), we find the increment for waves corresponding to maximum growth 
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The spatial growth increment is found by substituting T ~ ~I~% into (15). Then ~ = ~R/%. 

It is interesting to note that from (17) perturbations of any wavelength moving along the 
axis of the cylinder (B has an imaginary part) are damped (the real part of 8 is negative). 

The experimental and calculated results are compared in Fig. 5 in the form of the de- 
pendence kMR = f(We u - Weg). Satisfactory agreement is observed between the calculations 
(solid curve) and experiment. The dashed curve shows the calculated results using the for- 
mula of [5], which was obtained without taking into account the effect of the cylinder wall 
on the stability of the flow. Experimental results were obtained for cylinders with d = 48, 
26, and 15 mm (points 1-3). 

It is evident from the photograph of the flow (Fig. 3) that the distance between rolls 
varies somewhat along the length of the cylinder. Therefore the average value of the wave- 
length was found for each flow regime. 

Our results determine the nature of the waves produced on the surface of a film flowing 
rapidly along the surface of a cylinder. The cause of wave formation is the Taylor instabil- 
ity of the film surface induced by the centrifugal force. 

The authors thank V. E. Nakoryakov for suggesting the problem and for useful discussions 
of the results. 
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